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An approximate method is proposed for the solution of nonlinear boundary problems 
of convective heat and mass transfer; the method is based on the procedure of 
"averaging" equations or boundary conditions. 

The complexity of mathematical problems of chemical technology, as a rule, excludes the 
possibility of obtaining accurate analytical solutions. However, there often arises a situ- 
ation in which the basic interest is not in accurate solutions themselves (they may be cumber- 
some and inexpedient for practical use) but in approximate analytical dependences, which cor- 
rectly reflect the qualitative influence of the basic parameters on the given process. This 
is primarily because measurements in real processes may never be accurately reproduced. In 
the present work, two approximate methods (based on the idea of averaging) are proposed for 
solving boundary problems of convective mass and heat transfer; these methods may be used in 
engineering practice~ 

i. Method of Linearization of Averaging 

In investigating problems of chemical mechanics with boundary conditions of the first 
kind (it is assumed that the desired function c takes a constant value at the boundaries), a 
simple approximate method based on the replacement of any nonlinear monotonic function ~ = 
~(c) by the linear function 9" often proves useful 

(c) -,- a~* (c) = A + Bc, (1 )  

where the constant coefficients A and B are determined from the conditions of integral equal- 
ity of ~ and ~* on average 

! 

!B . [ A +  2 = <~> <a~>_= ~D(c)dc ( < ~ >  = <cD*>). (2) 
,O 
0 

For simplicity, it is assumed here that the region of definition of the desired function 
c is specified by the interval [0, i]; this may always be done by appropriate choice of the 
dimensionless function c. Determining the coefficients A and B requires the addition of one 
more relation, analogous to Eq. (2), which may be specified on the basis of various considera- 
tions. Below, the simplest and most natural choice of the constants A and B determining the 
function ~* in Eq. (i) and retaining the basic features of the initial function ~ is not used. 
Specifically, if the initial function ~ = #(c) does not vanish in the interval [0, i] and 

= 0(I), it will be approximated by a constant 

a)*--  < ~ >  ( A =  < a ) > ,  B = 0 ~ .  (3) 

whereas  i f  ~ v a n i s h e s  a t  some p o i n t  Co @ [0,  1 ] ,  r = 0 then  i t  i s  r e q u i r e d  t h a t  t he  ap -  
p r o x i m a t i n g  f u n c t i o n s  i n  Eqs.  (1) and (2) a l s o  v a n i s h  a t  t he  same p o i n t  r = 0; i n  p a r -  
t i c u l a r ,  when co = 0, t h i s  c o n d i t i o n ,  t o g e t h e r  w i t h  Eq. (2 ) ,  l e a d s  t o  the  e x p r e s s i o n  

d ~ * = 2 < ~ > c  (A-=0, B---2 <r (4) 

The accuracy of the given approximate method must naturally be estimated from the mean 
Sherwood number, which is also an integral mean. 

The method here proposed is now illustrated for some specific problems. First, steady 
convective diffusion to a drop or a solid particle whan an arbitrary chemical reaction occurs 
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in the volume of the liquid is considered. In dimensionless variables, the corresponding 
boundary problem takes the form 

Pe (vv) c = A c - -  k[ (c) ([ (0) O, "" "~ == t c ~ 0 ,  k>~o), (5) 
r : :  1, c = 1; r - -~oo,  c - + 0 ;  

c :=C/C,, k-,~ aZKvF(C,)/(DC,), [ ( c )=  F(C)/F(C,). (6)  

Here r is a dimensionless radius (the radius referred to the particle radius a); KvF is the 
rate of chemical reaction. 

The function f on the right-hand side of Eq. (5) vanishes when c = 0. This corresponds 
to the second case of the approximation in Eqs. (i) and (4) when co = 0 and ~ = kf, which 
leads to the following approximate boundary problem 

P e ( v v ) c  = A c - - 2 k  <f>c; r =  1, c =~ 1; r - + o o ,  c - + 0 ,  (7) 

w h i c h  c o r r e s p o n d s  t o  Eqs .  (5)  and  ( 6 ) .  

The behavior of the mean Sherwood number corresponding to the solution of the accurate 
problem in Eqs. (5) and (6) and the approximate problem in Eq. (7) in some limiting cases 
will now be compared. First, note that, in the case of a first-order chemical reaction in 
the volume f(c) = c, Eq. (7) coincides with Eqs. (5) and (6) with any values of the param- 
eters k and Pc, and therefore the accurate result is obtained, of course. When k ~ ~ (Pc = 
const), the mean Sherwood number corresponding to Eqs. (5) and (6) is determined by the 
formula [i] 

I 

Sh = (2k J" [ (c)de) I/2 ~(2k < [ > )'/2 (k--+ oo, Pe = const). (8) 
0 

It is evident that Eq. (8) does not change under the substitution k § 2k<f> and f(e) § c. 
This means that the use of the approximate Eq. (7) also leads in this case to the correct 
asymptotic result for the mean Sherwood number for any rate of chemical reaction in the 
liquid volume kf(c) (note that, despite the coincidence of the mean Sherwood numbers, the 
asymptotic solutions of the problems in Eqs. (5) and (6) and in Eq. (7) as k + ~ are dif- 
ferent). 

As Pe + = (k = const), the solutions of the accurate problem in Eqs. (5) and (6) and the 
approximate solution in Eq. (2) coincide. Some discrepancy of the results corresponding to 
Eqs. (5) and (6) and Eq. (7) is observed only in the limiting case of small Peclet numbers 
Pe § 0 -- i.e., when k = O(I). 

It is clear from the foregoing that the best results from the use of the approximate 
Eq. (7) should be expected at large (and moderate) Peclet numbers over the whole range of 
variation of the parameter k for any function f = f(c). 

If the mean Sherwood number, which is determined by the solution of the linear problem 
in Eq. (5) when f(c) = c is now denoted by J = J(k, Pc), the solution of the approximate 
problem in Eq. (7) corresponding to Eqs. (5) and (6) specifies the mean Sherwood number in 
the form Sh = J(2k<f>, Pc). The dependence J = J(k, Pc) may be obtained, for example, by 
numerical solution of the problem; in addition, the results obtained by the method of 
asymptotic extrapolation may be used [2]. This allows an approximate expression to be 
written for a mean Sherwood number -- corresponding to the problem in Eq. (5) -- in the form 

Sh(k,  PO = 1 + [(Sh(O, P c ) - -  1) z +  2k < [ > / / 2  (9)  

The convective heat transfer of a drop or a solid particle in a liquid may now be con- 
sidered with an arbitrary dependence of the thermal conductivity X, = X,(T,) on the tempera- 
ture T,, assuming that the temperature at the particle surface and far from it takes the 
constant values Ts and T~, respectively (T s r T~). For simplicity, it is assumed that in- 
homogeneity of the temperature does not influence the parameters of the flux. In dimension- 
less variables, the given nonlinear problem takes the form 

T 

P e ( v v ) T = d i v ( k v T ) ;  r = r , ,  T = 0 ;  r - + o o ,  T - -~ I ;  

T ~ - -  T ,  k = ~o (T) k ,  (T,)  Pe = -  aUcpp (~ (0) = 1) 
T,  -- T~" k ,  (T,) ' ~ ,  (T,) 

(io) 
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Here, as usual, it is assumed that the product of the specific heat and the density is con- 
stant: Cpp = const. 

In problems of the type in Eq. (i0), as a rule, ~ = 0(i) when T 6 [0, i]; this corre- 
sponds to the first case of the approximation in Eq. (I) and (3) when ~ = % and leads to 
the following approximate problem 

P e ( v v )  T = < ~> AT; r = G, T =-0;  r - + o o ,  T - + I .  (11 )  

I n  c o n s t r a s t  t o  t h e  n o n l i n e a r  b o u n d a r y  p r o b l e m  i n  Eq.  ( 1 0 ) ,  t h e  s o l u t i o n  o f  t h e  l i n e a r  
averaged problem in Eq. (Ii) has not yet been obtained in many specific cases. Note that, 
in the linear case X = i, the problems in Eqs. (I0) and (Ii) coincide. 

At small Peeler numbers Pe < 0(i), the approximate problem in Eq. (ii) gives the correct 
asymptotic result for the mean Nusselt number Nu = Nu(X, O) for any form of the particles 
and an arbitrary dependence % = X(T) [3] 

Nu(Z, 0)= <z> NuO, O)(Nu= I ~ 
, -gf. j. (12) 

At large Peeler numbers, the nonlinear boundary problem in Eq. (i0) has been scarcely 
investigated at all as yet. Only a few specific cases in which an accurate asymptotic solu- 
tion of Eq. (I0) as Pe § ~ may be obtained will be considered here. 

In the analysis for the velocity field of the liquid, consideration is limited to the 
principal term in the expansion of the current function (axisymmetric and plane cases are 
considered) close to the surface of the drop ~ = 0 (n = i) or a solid particle (n = 2, 3) 

= (% v = o}  (o  o ) ,  

v go an @ gO=g   o o 

The coordinate ~ here is directed along the surface of the body (n : 0 corresponds to the in- 
flow point) and ~ along the normal to the surface; it is assumed that the local value of 

determines the distance from the point (~, n) to the surface of the body (0, n), i.e., 
g~~ = i)', gg~' gnn, g~ are the components of the metric tensor; a superscript zero denotes 
that the corresponding value is taken at the body surface. 

The approximation in Eq. (13) is valid in thermal problems for very viscous liquids when 
the thickness of the thermal boundary layer is considerably less than the thickness of the 
hydrodynamic boundary layer and is practically always valid in analogous diffusional problems. 

Taking into account that, in the given boundary-layer approximation, div(lVT) = rXT'I' L ~, 
and passing to the variable [4] 

x = P e ~ ,  ' /~,  z = a 1/~ (N) d l  I, x' = - - ,  ( 1 4 )  
n + l  

0 

the problem in Eq. (12) reduces to the following: 

OT l-,~ a aT 
----x - - s  = 0 ;  x = 0 ,  T =  1; x = 0 ,  
Or ax ~ (15) 

T = 0; x--+oo,  T - + I .  

The introduction of the new self-similar variable z = x~ -~ brings the problem in Eq. (15) 
to the form of an ordinary differential equation 

d L (T) + ~z ~ - 0; z 0, T 0; z - ~  oo, T -+  1. 
dz az ] dz 

When n = 1 ,  Eq.  (16)  i s  o f t e n  e n c o u n t e r e d  i n  p r o b l e m s  o f  n o n l i n e a r  t h e r m a l  c o n d u c t i v i t y  [5]  
and filtration [6] and, for any dependences ~(T), its solution has already been obtained by 
analytical or numerical methods. 

To compare the accurate and averaged (% § <%>) solutions of Eq. (16) when n = i, con- 
sider the linear temperature dependence of the thermal conductivity which is often employed 
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1 
n = l ,  ~ ( T ) =  I + •  <X> = l - E - - x  (17) 

2 

When • the solution of the accurate and averaged problems in Eqs. (16) and (17) 
coincide. When • the solution of the accurate problem may be found in [7], and the solu- 
tion of the averaged problem takes the form T = erf(z/~). The maximum error introduced by 
the averaging procedure will correspond to the transition in Eq. (17) to the limit as • + =. 
In this case, the first term (unity) on the right-hand side of the expressions for % and <%> 
in Eq. (17) may be neglected. The accurate solution of the problem in Eq. (16) when %(T) = 
• was obtained in [6] and leads to the following local flux at the drop surface 

= 0 , 6 6 4 V ~  J* = 2 < % > ~ 0,798 K ~  (18) J= s  z=0 

The second  e x p r e s s i o n  h e r e  c o r r e s p o n d s  to  t h e  l o c a l  f l u x  f o r  t h e  a v e r a g e d  Eq. (16) as  •  
Compar i son  of  t h e  e x p r e s s i o n s  i n  Eq. (18) shows t h a t  t h e  maximum e r r o r  i n t r o d u c e d  by t h e  
a v e r a g i n g  p r o c e d u r e  i s  20% i n  t h i s  c a s e .  N o t e ,  howeve r ,  t h a t ,  i n  t h e  l i m i t i n g  c a s e  as  •  
t h e  b a s i c  c o n d i t i o n  o f  a p p l i c a b i l i t y  o f  t h e  a v e r a g i n g  p r o c e d u r e  i s  no t  s a t i s f i e d  -- t h a t  i s ,  
t h e  c o n d i t i o n  t h a t  X(T) = 0(1)  when T 6 [0 ,  1 ] .  I n  r e a l  s i t u a t i o n s ,  when ~ = 0 ( 1 ) ,  t h e  e r r o r  
i n  u s i n g  t h e  a p p r o x i m a t e  e q u a t i o n  may be  c o n s i d e r a b l y  l e s s  t h a n  20%. 

It follows from the results of [7] that an analogous error is also observed in averaging 
the nonsteady boundary problems corresponding to Eq. (i0). In particular, in approximating 
the flow field in the vicinity of the drop surface, by the principal term of the expansion of 
the current function in the form ~ + 0, ~ = ~o(t, ~) -- cf. Eq. (13) -- there is a variable 
change [7] which allows the nonsteady boundary problem in Eq. (i0) to be reduced to an ordin- 
ary differential equation, Eq. (16) with n = i; here z = z(t, 4, q) has already been deter- 
mined in the course of solving the problem. Then, in the case of a linear temperature depen- 
dence of the thermal diffusivity in Eq. (17), the maximum error in using the averaging pro- 
cedure is also no more than 20%. 

The next step is to write the problem in Eq. (i0) in which the averaging procedure for 
the thermal diffusivity in Eq. (13) is asymptotically accurate for large Peclet numbers(for 
the mean Sherwood number). Specifically, it is shown that Eq. (13) gives a correct asymptotic 
result: i) in doubly connected regions with completely closed streamlines (Fig. la); 2) in all 
external problems in which a region with completely closed streamlines is adjacent to the sur- 
face of the body (Fig. ib) (this case corresponds, for example, to themotion of a freely 
suspended spherical particle of cylinder in a linear shear flux [8, 9]). 

Consider the first case first. For analysis, in addition to the spherical coordinate 
system r, 0, % it is expedient to introduce an orthogonal coordinate system ~, X, ~ associ- 
ated with the streamlines; the fixed curves X = const are orthogonal to the streamlines @ = 
const; the dependence X = x(r, 0, ~) is determined by solving the equation (V~Vx) = 0, only 
the plane or axisymmetric case, i.e., 3/~ ~ = 0 being considered here. In this coordinate sys- 
tem, Eq. (i0) takes the form 

(19) 
v =(0, v~, O),v~ =(g~/g)~/2, g = g**g~g~ 

In the plane case g~ = i and in the axisymmetric case g ~  = r2sina0. 

To Eq. (19) must be added boundary conditions on the limiting streamlines 

* = , ~ ,  T = 0 ;  , = , ~ ,  T =  1. (20) 

The d i m e n s i o n l e s s  t e m p e r a t u r e  T i n  Eqs .  (19) and (20) i s  i n t r o d u c e d  a n a l o g o u s l y  as  i n  Eq. 
(i0), with the corresponding substitution Ts § Tst, T~ § Ts~ (Tst and Tsa are the temperatures 
at the surfaces ~t and ~a). The solution of Eqs. (19) and (20) as Pe § ~ is sought in the 
form of a regular asymptotic expansion in inverse powers of the Peclet number 

T = T o +  Pe-~Tz + . . . .  To/T~= 0(1). (21) 
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Fig. i. Streamlines in the gap between two (rotating) cylin- 
ders (a) and in the vicinity of a circular cylinder freely 
rotating in a simple shear flow (b). 

Substitution of Eq. (21) into Eqs. (19) and (20) gives, after isolating the terms with 
identical powers of the Peclet number for the principal terms of the expansion, the result 

OT, 
OX 

OTo = 0; ~ = ~A, To = 0; ~ = ~2, To -= 1; (22)  
0X 
0 [ V ~ OTo] 0 [,,"~ OTo ] 

= ~1, T1 = O; g) = ~.,, T1 = O. 

It follows from Eq. (22) that the zero term of 
function (it is assumed that ~/~ ~ = 0) 

the expansion depends solely on the current 

To ---- To (~). (24)  

The boundary conditions in Eq. (22) are then found to be insufficient for the determination 
of the temperature To. The necessary additional information on the zero term of the expan- 
sions in Eqs. (21) and (24) is obtained using a procedure often encountered in applying the 
expanded-coordinate method and the multiple-scale method with successive elimination of the 
secular (increasing) terms [i0, ii]. 

Taking into account that the function T is periodic in the coordinate X (.with period Xo) 

T(~, X)----T(~, %-~Z0) (Ti(#, %)----Ti0tr', X@X0); i=0, 1 .... ), (25) 

the equation is integrated for the next term of the expansion of T, in Eq. (23) with respect 
to X: 0 ~ X ~ Xo. As a result, an ordinary differential equation is obtained for To. 

[ aT0] 
---- =0; T0---0; , = , 2 ,  T0=I; 

~o (26) 

0 

The s o l u t i o n  o f  Eq.  (26)  ( w r i t t e n  i n  i m p l i c i t  fo rm)  i s  d e f i n e d  by  t h e  f o r m u l a s  
To 

A(~, ~l) A(~,~h)= - - ,  . %(T)dT= <%> A(,~,  ~[h)' r(,) (27) 

and the corresponding mean Nusselt number Nu(%, Pe) takes the form 

Nu(~,, oc)= < s  oo), Nu( l ,  oo) = A - t ( ~ ,  ~1)- (28) 

It is not difficult to show, analogously, that the asymptotic solution of the "averaged" 
problem in Eq. (ii) at large Peclet numbers is specified by Eq. (27) at % = <%> = i. The cor- 
responding mean Nusselt number is determined by integrating the local diffusional flux j = 
<~>( g/~g~dTo/d~)~=~, with respect to the period Xo, and leads to the same expression, Eq. 
(28) -- i.e., in the given case, the "averaged" Eq. (ii) leads to an accurate asymptotic result 
for the mean Sherwood number. Note that Eqs. (27) and (28) generalize the results of [9, 12] 
to the nonlinear case. 
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In the second case (Fig. ib), boundary conditions at the surface of the body and at in- 
finity are imposed. It may readily be shown that at large Peclet numbers the temperature 
distribution in the flow is also described here by the ordinary differential equation in Eq. 
(26), where ~ = ~i corresponds to the surface of the body and ~ = ~2 to the limiting stream- 
line, which separates the region with closed streamlines from the region with open stream- 
lines; the boundary condition at infinity is "transferred" to this limiting streamline, i.e., 
the concentration in the region with open current lines is constant, and equal to the unper- 
turbed value at infinity. The given case is realized, for example, with linear shear flow 
around an unfixed circular cylinder, when the liquid velocity field at infinity in the Car- 
tesian coordinate system xl, x2, x3 may be written in the form v = G{x=, 0, 0}, where G is 
the shear coefficient. In Fig. ib, the streamlines ~ = const are shown, where 

~ = - $ - ( r  - -  - - - ~ - - ( r - - - 2 + r - 2 ) c o s 2 0 ,  vr . . . .  r --'00 v e = - - - - , O r  (29) 

which corresponds to such shear flow around a circular cylinder (which rotates at constant 
angular velocity) [8, 9]; in writing the dimensionless current function in Eq. (29), the 
quantity U = aG (a is the cylinder radius) is taken as the characteristic velocity scale. 
The limiting streamline dividing the regions with closed and open streamlines is determined 
by the relation ~ = 1/4 in Eq. (26). 

The asymptotic solution of the problem in Eq. (i0) as Pe § ~ in the second case (Fig. 
ib) is also specified by Eq. (27). The mean Nusselt number over the surface of the body cor- 
responding to the solution of the accurate problem in Eq. (i0) and the averaged problem in 
Eq. (ii) coincide here, and are determined by Eq. (28). 

Note that, in the particular case of the heat transfer of an unfixed circular cylinder 
in linear shear flow in Eq. (29) at large Peclet numbers, with any law of variation in the 
thermal conductivity X = X(T) as a function of the temperature, the mean Nusselt number must 
be determined using Eq. (28), where Nu(l, ~) = 2.87 [9]; the dimensionless integral flux is 
2~Nu(l, ~). In the case of the heat transfer of a sphere freely suspended in a shear flow 
(a three-dimensional flow field), Nu(l, ~) ~ 4.5 must be assumed in Eq. (28) [13]. 

It is clear from the given comparisons with accurate asymptotic results that the 
"averaged" Eq. (Ii) may be successfully used for the approximate determination of the mean 
Sherwood number. 

Earlier in [3], asymptotic analysis of the nonlinear boundary problem in Eq. (i0) at 
small Peclet numbers is performed in the case of translational and arbitrary shear flow for 
any form of drops and particles. For the mean Nusselt number Nu(X, Pc), the following formula 
is obtained 

Nu (X, Pe) = < ;~ ) Nu (1, Pe), 
1 

< ~ > = . f~(T)dT,  
0 

(30) 

which allows the first three terms (in the case of a translational flow) and the first two 
terms (in the case of shear flow) in the asymptotic expansion with respect to the small 
Peclet number to be determined. Here Nu(l, Pe) is the mean Nusselt number corresponding to 
the linear problem in Eq. (i0) with a constant thermal conductivity X = i, which was obtained 
in [14, 15], respectively, for translational and shear flow around a particle. 

It follows from a comparison of Eqs. (28) and (30) that Eq. (30) may successfully be used 
for the aprpoximate determination of the mean Nusselt number over the whole range of Peclet 
numbers, with any temperature dependence of the thermal conductivity, for a broad class of 
flows (in any case, with shear flow around freelysuspended particles). 

2. Method of Boundary-Condition Averaging 

In nonlinear boundary problems described by linear partial differential equations with 
nonlinear boundary conditions at the surface of the body (nonlinear boundary conditions of 
the third kind), a simple approximate method based on satiafying the boundary conditions at 
the particle surface "on average" is often useful for approximate determination of the inte- 
gral thermal and diffusional fluxes at the particle surface [16]. The basic idea of the 
method is illustrated in the following example, which is of independent interest. 

Consider convective diffusion to a reacting solid or liquid sphere immersed in a laminar 
liquid flow when an isothermal chemical reaction occurs at the surface of the body at a rate 
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depends in an arbitrary manner on the temperature and the concentration. It is assumed that 
the particle is not heat-conducting, and that the reacting components are present in concen- 
trations sufficiently small for the presence of a surface chemical reaction to have no in- 
fluence on the parameters of the flow and the particle. No account is also taken either of 
the thermal and baric diffusion, and so on. 

The dimensionless equations of convective diffusion and thermal conductivity and the 
boundary conditions expressing the homogeneity of the temperature and concentration far from 
the particle, together with the "reaction law" and the heat balance at its surface, take the 
form 

Pen (vv) cm = Acre, m = I, 2 .... , M, 

Peo (vv) T = AT, 

r - -~oo,  cm-+0 ,  T - + 0 ,  

r = 1, ac,. = fm (T, cl . . . . .  cM), 
Or 

M 

r =  1, aT  _ "W; h acra 
' - -  x . . a  r a ~  , 

Or ,.=1 Or 

Crn = Cmm (| - -  crn), T,  = To~ (1 - -  T), 

Pe~ = aUD-~ l , Pc0 = aUa -i ,  

hm = Cm,oHr.D,. (~,T=) -~, fm (T, c 1 . . . . .  c,~) = a (DmCmoo)-JFm ( T , ,  C,  . . . . .  C~) .  

(31) 

(32) 

(33) 

(34) 

(35) 

It is impossible to obtain an effective solution of the problem in Eqs. (31)-(35) even 
in the simplest linear case when M = 1 (with arbitrary Peclet numbers 0~Pe < =). Therefore, 
the approximate solution in Eqs. (31)-(35) is constructed as follows. An (M + l)-parameter 
family of functions Cm and T satisfying Eqs. (31) and (32) and boundary conditions at 
infinity are taken 

cm = Amum, T = B ~ ,  um = E (r, Peru), w = E (r, Peo), (36)  

Am = const, B = const (m = 1, . . .  , M). 

Here the function E = E(r, Pc) is a solution of the following linear boundary problem 

P e ( v v ) E - : A E ;  r----1, E= 1; r - + o o ,  E - - 0 ,  (37) 

and the arbitrary constants Am and B will be determined below in the course of solving the 

problem. 

It may readily be established, by direct verification, that the function c m = Amum and 
T = Bw in Eqs. (36) and (37) with any constants Am and B satisfy Eqs. (31) and (32) and the 
boundary problems at infinity in Eq. (33). The unknown constants Am and B are determined 
from the condition that the nonlinear boundary conditions in Eqs. (34) and (35) are equal 
on average over the particle surface 

r =  1, - -  de d S =  fr.dS; r aT  d S =  
or . . or . " T J  aS. ( 3 8 )  

S S S S " =  I 

S u b s t i t u t i n g  Eqs .  (36)  and (37)  i n t o  t h e s e  f o r m u l a s ,  and  r e v e r s i n g  t h e  o r d e r  o f  s u m m a t i o n  and  
integration on the right-hand side of the last relation in Eq. (38), the following transcen- 
dental (algebraic) equations are obtained for determining Am and B 

M 

Sh,. = I,.(B, A~ . . . .  , Am,  Nu = ~ h , .Sh, . ;  
m =  1 

1 ~ acre dS; N u  l l O T  dS  ( m = l  . . . . .  M) .  
S h i n = -  4--~- Or 4z~.  Or 

S S 

(39) 

(36) and (37), there is a simple relation It is also taken into account that, in view of Eqs. 
between the mean Sherwood and Nusselt numbers and the parameters Am and B 
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Sh~ = A~ Sh~| Nu = B Nu.;  

1 [ Ou~ dS; NU~= 1 [Ow dS (40) 
S h ~  = -  4"--~-. Or --  4--s Or ' 

s s 
where Shm~ and Nu~ correspond to purely diffusional (thermal) reaction conditions at the sur- 
face of the sphere in Eq. (37). 

Excluding the parameters A m and B from Eq. (40), and substituting them into Eq. (39), 
the following system of transcendental equations is obtained for determining the mean Sher- 
wood and Nusselt numbers 

Shin=Ira( Nu Shl . ShM); m = l  . . . . .  M; 
N u ~ '  Shl~ '  "" ' ShM~ 

(41) 
M 

N u =  ~h~Shm. 

Note that, in order to determine the auxiliary Sherwood Shm~ and Nusselt Nu~ numbers ap- 
pearing in Eq. (41), it is sufficient to know the solution of only one of the linear rela- 
tions in Eq. (31) over the whole range of Peclet numbers 0~Pe < ~. As already noted, 
there are at present sufficiently many solutions of the problem in Eq. (37) obtained for 
different conditions of flow around a drop or a particle by numerical, analytical, or approx- 
imate methods. 

In the isothermal case, when M = i, the suitability of the approximate Eq. (41) in 
various specific situations was checked in [i, 17], where it was shown that the maximum devi- 
ation of the roots of the approximate Eq. (41) from the accurate mean Sherwood number is ob- 
served at large Peclet numbers (Pe § ~) and does not exceed 7-9% as a rule. 

Note that the approximate system of transcendental equations in Eq. (41) is asymptoti- 
cally accurate at small Peclet numbers Pe § 0, Pe m = PeQm, Qm = 0(i), and allows the first 
three terms (in the case of a translational flow [18]) and the first four terms (in the case 
of arbitrary linear shear flow [19]) of the corresponding asymptotic expansion in small Peclet 
numbers to be obtained for the mean Sherwood and Nusselt numbers. 

NOTATION 

C, concentration in flow; Cs, concentration at particle surface; Ca, unperturbed concen- 
tration at infinity; Cm, concentration of the m-th component; Cm~, concentration of the m-th 
component at infinity; c = C/Cs, dimensionless concentration; cm = (Cm~-- Cm)/Cm~; D, Dm, 
diffusion coefficients; Fm, rate of surface reaction of the m-th component; fm = a(DmCm~)-ZFm, 
dimensionless reaction rate of the m-th component; G, shear coefficient; g~, gnu, g~, com- 
ponents of the metric tensor; Hm, heat of reaction of the m-th component; h m = HmCm~Dm(IT~)-1; 
KV, rate constant of chemical reaction in the liquid volume; k, dimensionless reaction rate 
constant; M, number of reagents involved in reaction; Nu, mean Nusselt number; Pe, Peclet 
number; Peo, Pem, thermal and diffusional Peclet numbers; r, 0, ~, spherical coordinate sys- 
tem associated with the particle; Sh, Shm, mean Sherwood number; T,, temperature in flow; T~, 
temperature at infinity; Ts, temperature at particle surface; T, dimensionless temperature; 
U, characteristic velocity of flow; xl, x=, x3, Cartesian coordinate system; ~, thermal con- 
ductivity; ~, D, ~, local orthogonal curvilinear coordinate system associated with particle 
surface; 0, liquid density; o, thermal diffusivity; 4, current function; 4, X, ~ , curvilinear 
coordinate system associated with the current function; r = rs(e, ~ ), equation of particle 
surface (for the sake of brevity, the arguments 8 and ~ of the function r s are omitted in the 
text). 
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